

ASX Announcement

24 April 2024

BC EAST DRILLING CONFIRMS PREVIOUS POSITIVE RESULTS

Predictive Discovery Limited (ASX:PDI) ("PDI" or the "Company") is pleased to report further nearresource drilling results from the 5.38Moz¹ Bankan Gold Project in Guinea. Near-resource exploration is aiming to discover additional deposits close to NEB and BC, which have potential to enhance the production profile reported in the recent Pre-Feasibility Study ("PFS"). Results in this announcement are from 82 holes for 7,285m.

HIGHLIGHTS

- BC East reverse circulation ("RC") drilling results of 9m @ 3.36g/t from 17m and 10m @ 1.43g/t from 85m, following up positive previous results including 16m @ 1.58g/t from 5m.²
- Latest drilling at South Bankan ("SB") intersected shallow mineralisation, including 5m @ 2.41g/t from 58m, 6m @ 1.88g/t from 43m, 2m @ 4.71g/t from 11m and 1m @ 7.71g/t from 18m.
- Near-resource drilling will continue on a results-driven basis. Infill drilling is underway at BC, targeting to upgrade Inferred Mineral Resources beneath the PFS pit design in line with the optimisation opportunity identified in the PFS.

Commenting on the results, Managing Director Andrew Pardey, said:

"The area around NEB and BC is showing excellent potential to host multiple satellite deposits. Pleasingly, these latest results have BC East also emerging as an area of interest, with encouraging results in the same structural corridor that hosts the BC deposit."

"SB has delivered additional shallow intercepts on the eastern edge of the target area, which indicate a third mineralised zone."

"The discovery of satellite deposits near NEB and BC is one of the key opportunities identified in the PFS, and has potential to improve PFS outcomes and bring numerous benefits such as mine life extension and mine planning flexibility. Near-resource exploration will therefore remain a key focus for PDI moving forward, to complement the regional exploration program currently centred on the Argo area."

¹ Refer to Compliance Statement at the end of this announcement.

² ASX Announcement - Drilling at Bankan Delivers More Positive Results (11 December 2023).

Predictive Discovery Limited ABN 11 127 171 877 Suite 8, 110 Hay Street, Subiaco WA 6008 T +61 8 9216 1020

ASX: PDI predictivediscovery.com

NEAR-RESOURCE DRILLING RESULTS

Previous exploration in the NEB and BC area, including geophysics, auger drilling and aircore drilling, defined numerous attractive near-resource exploration targets.

Drilling is ongoing to test these targets, with the aim of discovering additional gold deposits which can support a future operation centred around NEB and BC.

Results in this announcement are from 82 holes for 7,285m. This includes 79 RC holes at the BC East, SB and BC North targets, as well as 3 DD holes at SB and South East Bankan ("SEB").

Results are shown in Figure 2 below.

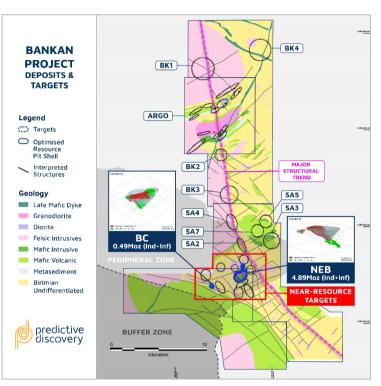


Figure 1: Bankan Project deposits and targets

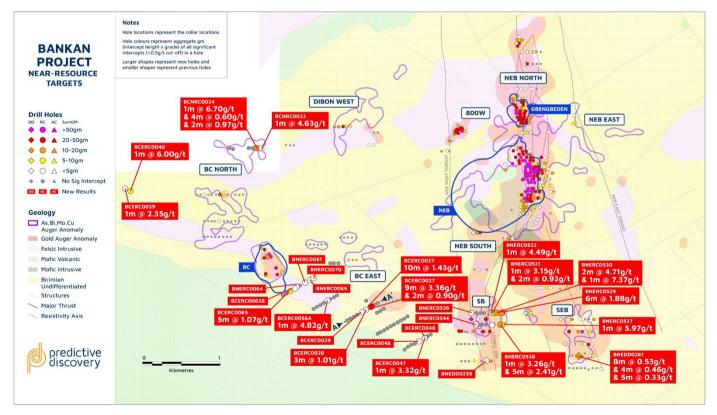


Figure 2: Drill plan for near-resource targets

BC East

Results have been received from 54 RC holes drilled on lines approximately 400m apart within the interpreted WNW-ESE trending corridor which hosts the BC deposit.

Drilling has followed up positive previous results, including 16m @ 1.58g/t from 5m and 3m @ 2.07g/t from 68m in BCERC0003 and 7m @ 0.67g/t from 92m in BCERC0004.³ Further positive results were recorded in the immediate vicinity of these previous results, including:

•	BCERC0026:	9m @ 3.36g/t from 17m
		2m @ 0.90g/t from 34m
		3m @ 1.18g/t from 39m
•	BCERC0027:	10m @ 1.43g/t from 85m
•	BCERC0028:	3m @ 1.01g/t from 48m

As shown in Figure 3, the intercepts in BCERC0026 and BCERC0027 are interpreted to be down-dip extensions of the previous intercepts. Drill azimuth was changed to 60° (previously 90°) in the latest drilling, reflecting a reinterpretation that mineralisation at BC East has an expected dip and strike direction similar to BC.

These results are encouraging, and one DD hole has been drilled on this same section to further test the down-dip extension. Additional RC holes have been drilled to test the mineralisation along strike between the initial RC lines. Further drilling will be planned subject to results.

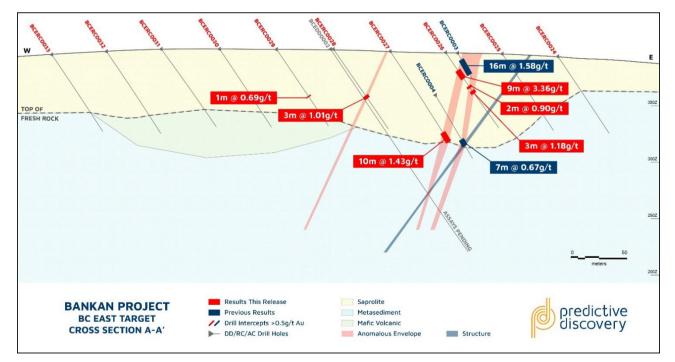


Figure 3: BC East cross section A-A'

³ ASX Announcement - Drilling at Bankan Delivers More Positive Results (11 December 2023).

Other significant intercepts recorded at BC East on other RC lines included:

- BCERC0065: 5m @ 1.07g/t from 68m
- BCERC0056A: 1m @ 4.82g/t from 17m
- BCERC0047: 1m @ 3.32g/t from 90m

SB and SEB

The SB and SEB targets are located ~1km south and ~1km south-east of NEB respectively, within the broad multi-kilometre N-S deformation corridor which hosts the NEB deposit and extends north to the Argo permit. The current DD and RC drilling program is following up successful previous AC and auger drilling and has intercepted multiple mineralised structures. This area exhibits structural complexity, with the preliminary interpretation of multiple secondary WNW-ESE and SSW-NNE orientated structures that crosscut the main N-S structure. Some of these structures extend to depth, making these targets highly prospective. Drilling results to-date indicate potential for these targets to host satellite deposits.

Results from 17 RC holes drilled across two lines in the central part of the SB deposit returned further positive results. The results suggest an additional zone of mineralisation is present at SB, with the interpretation now of three parallel west-dipping zones, controlled by a N-S structure but offset by multiple secondary structures. Best new intercepts included:

•	BNERC0538:	1m @ 3.26g/t from 54m 5m @ 2.41g/t from 58m
•	BNERC0530:	2m @ 4.71g/t from 11m 1m @ 7.37g/t from 18m
•	BNERC0529:	6m @ 1.88g/t from 43m
•	BNERC0537:	1m @ 5.97g/t from 29m
•	BNERC0531:	1m @ 3.15g/t from 14m 2m @ 0.93g/t from 51m
•	BNERC0532:	1m @ 4.49g/t from 77m

At SEB, results were received from one DD hole at the southern end of the target area. BNEDD0261 was drilled to test the extension of positive previous intercepts in saprolite and the transition zone. An intercept of 8m @ 0.53g/t from 70m was recorded in basalt altered by chlorite and sericite, containing disseminated pyrite. Other minor intercepts were recorded further down the hole.

BC North

Eight RC holes at a multi-element auger anomaly north of the BC deposit recorded best intercepts of:

•	BCNRC0034:	1m @ 6.70g/t from 6m
		4m @ 0.60g/t from 18m
		2m @ 0.97g/t from 42m
•	BCNRC0040:	1m @ 6.00g/t from 34m
•	BCNRC0033:	1m @ 4.63g/t from 13m

Next Steps for Near-Resource Exploration

Infill drilling has commenced at BC to target upgrading of Inferred Mineral Resources beneath the PFS pit design, which is an optimisation opportunity identified in the PFS. An aircore drill program has commenced and will focus on testing the lateral continuity of several significant intercepts at BC North, SEB and 800W and NEB North. Additional drilling will also continue on a results-driven basis.

Auger drilling has commenced north of NEB, along the main N-S structural corridor. This program will test the geochemical signature of prospective areas highlighted by previous airborne geophysics to assist with identifying additional near-resource targets.

- END -

This announcement is authorised for release by PDI Managing Director, Andrew Pardey.

For further information visit our website at www.predictivediscovery.com or contact:

Investor Enquiries Brad Milne Corporate Development Manager E: brad.milne@predictivediscovery.com P: +61 8 9216 1000

Media Enquiries Bobby Morse/George Pope Buchanan E: predictive@buchanancomms.co.uk P: +44 (0) 20 7466 5000

ABOUT PREDICTIVE DISCOVERY

PDI's strategy is to identify and develop gold deposits within the Siguiri Basin, Guinea. The Company's key asset is the Tier -1 Bankan Gold Project. A Mineral Resource of 5.38Moz has been defined to date at the NEB (4.89Moz) and BC (487Koz) deposits,⁴ making Bankan the largest gold discovery in West Africa in a decade.

PDI recently completed a Pre-Feasibility Study ("PFS") and Environmental & Social Impact Assessment, which are crucial steps to secure a mining permit for the Project. The PFS outlined a 269kozpa operation over 12 years, with a maiden Ore Reserve of 3.05Moz and strong financials.⁴

The Bankan Project is highly prospective for additional discoveries. PDI is also exploring targets near the NEB and BC deposits, and regionally to the north along the 35km gold super structure which runs through the permits.

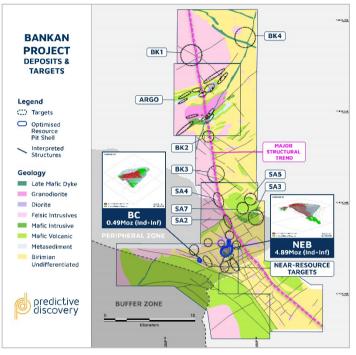


Figure 4: Bankan Project deposits and targets

COMPETENT PERSONS STATEMENT

The Exploration Results reported herein for the NEB and BC area are based on information compiled by Mr Franck Bizouerne, who is a member of the European Federation of Geologists. Mr Bizouerne is a full-time employee of the Company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bizouerne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

COMPLIANCE STATEMENT

The information in this announcement that relates to the previous mineral resource estimate is from the announcement titled "Bankan Mineral Resource increases to 5.38Moz" dated 7 August 2023. The information in this announcement that relates to the previous ore reserve estimate is from the announcement titled "PFS Delivers Attractive Financials & 3.05Moz Ore Reserve" dated 15 April 2024.

The estimates are summarised in the tables below. The Company it is not aware of any new information or data that materially affects the mineral resource or ore reserve estimates contained in this announcement and all material assumptions and technical parameters underpinning the mineral resource and ore reserve estimates continue to apply and have not materially changed.

Table 1: Bankan Gold Project Mineral Resource Estimate

Deposit	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Indicated	0.5	78.4	1.55	3,900
NEB Open Pit	Inferred	0.5	3.1	0.91	92
	Total		81.4	1.53	3,993
NEB Underground	Inferred	2.0	6.8	4.07	896
NEB Total			88.3	1.72	4,888
	Indicated	0.4	5.3	1.42	244
BC Open Pit	Inferred	0.4	6.9	1.09	243
BC Total			12.2	1.24	487
Total Bankan Project			100.5	1.66	5,376

Table 2: Bankan Gold Project Ore Reserve Estimate

Deposit	Mining Method	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Open Pit	Probable	0.5	46.2	1.41	2,101
NEB	Underground	Probable	1.7	7.1	3.24	739
	Total			53.3	1.66	2,840
DC	Open Pit	Probable	0.4	4.3	1.48	207
BC	Total			4.3	1.48	207
Total Open Pit				50.6	1.42	2,308
Total Underground				7.1	3.24	739
Total Bankan I	Project			57.7	1.64	3,047

The production targets and forecast financial information referred to in this announcement is from the announcement titled "PFS Delivers Attractive Financials & 3.05Moz Ore Reserve" dated 15 April 2024. The Company confirms that all the material assumptions underpinning the production targets and forecast financial information derived from the production targets in the previous announcement continue to apply and have not materially changed.

The information in this announcement that relates to the previous exploration results have been cross referenced to the original announcement or are from announcements listed in the table below. The Company confirms that it is not aware of any new information or data that materially affects previous exploration results referred to in this announcement. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the relevant original market announcements.

Date	Announcement	Date	Announcement
15 April 2024	PFS Delivers Attractive Financials & 3.05Moz Ore Reserve	24 August 2021	Strong Widths and Grades from Bankan Creek Resource Drilling
9 April 2024	Excellent Results from Argo Central Trend	02 August 2021	More Broad Widths and High-Grades from Bankan Drilling
1 February 2024	Sounsoun, SB and SEB Targets Advanced by Latest Drilling	19 July 2021	Bonanza Gold Grades as High-Grade Zone Is Revealed at Bankan
11 December 2023	Drilling at Bankan Delivers More Positive Results	17 June 2021	Broad Gold Intercepts from Bankan Creek and NE Bankan
24 October 2023	Promising Results from Across the Bankan Gold Project	03 June 2021	NE Bankan Extends to Depth with Strong Gold Grades
12 September 2023	Further Strong Drilling Results from the NEB & BC Area	31 May 2021	6m at 32g/t Gold from First Drilling at Koundian, Guinea
29 August 2023	Encouraging Initial Argo RC Results	13 May 2021	Widespread & High-Grade Gold from Bankan Regional Auger
7 August 2023	Bankan Mineral Resource Increases to 5.38Moz	06 May 2021	NE Bankan Central Gold Zone Extending to South at Depth
7 August 2023	Resource Definition Drilling Results	28 April 2021	Bankan Aeromag Many New Drill Targets Along 35km Structure
19 June 2023	Encouraging Drill Results at NEB, BC and Nearby Targets	15 April 2021	NE Bankan Gold Mineralisation Substantially Extends at Depth
19 June 2023	Argo Target Upgraded by Recent Auger Results	31 March 2021	NE Bankan Grows To 300m Wide. High Grade Gold from Surface
5 June 2023	Positive Resource Drilling Results from NEB and BC	15 March 2021	Exceptionally High Grades, Thick Intercepts from NE Bankan
22 May 2023	Multiple High Priority Drill Targets Identified at Argo	05 March 2021	Substantial Oxide Gold Zone Emerging at NE Bankan Project
6 April 2023	RC Drilling Underway at Near-Resource Targets	25 February 2021	More Depth Extensions from Drilling Bankan Gold Discoveries
4 April 2023	Infill Drilling Results	11 February 2021	High Grade Drill Results Extend Bankan Ck Discovery to North
21 February 2023	High-Grade Intercepts Extends Underground Mineralisation	28 January 2021	Outstanding, Wide Gold Intercept Grows Bankan at Depth
06 February 2023	50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated	22 January 2021	Bankan Gold Project Drilling Accelerated
30 January 2023	Outstanding Infill Drilling Results Continue	27 November 2020	Exploration Update - Bankan Gold Project, Guinea
30 November 2022	Promising Near-Resource Drilling and Geophysics Results	20 October 2020	Exploration Update - Bankan-2 Gold Drilling Underway
10 November 2022	Positive Infill Drill Results & Grade Control Program Complete	13 October 2020	92m at 1.9g/t Gold - Diamond Drilling Expands Bankan Project
29 September 2022	High Grade Gold 200m Below NE Bankan's 3.9Moz Resource	25 September 2020	NE Bankan Gold Deposit Grows with More Strong Drill Results
25 August 2022	Impressive Gold Hits Continue At 4.2Moz Bankan Gold Resource	10 September 2020	55m at 2.94g/t Gold-Broad True Widths Confirmed At Bankan
01 August 2022	4.2Moz Bankan Gold Resource	03 September 2020	NE Bankan Now 1.6km Long with Possible Parallel Gold Zone
15 June 2022	Deepest Hole to Date Intercepts Gold 630m Down Dip	27 August 2020	Bankan Creek Gold Zone Further Expanded
19 May 2022	60,000m Drill Program Underway at Bankan & Key Appointments	19 August 2020	Strong Wide Gold Intercepts from Bankan Creek and NE Bankan
27 April 2022	41.5m @ 5.2g/t Au Intersected at NE Bankan	07 August 2020	Outstanding High-Grade Gold Results from NE Bankan, Guinea
02 February 2022	Multi-Deposit Potential Grows with Strong Results	31 July 2020	Diamond Drilling Confirms Gold at Depth at NE Bankan, Guinea
13 January 2022	33m @ 4.5 g/t Au at NE Bankan, Guinea	17 July 2020	Impressive 1st RC Drill Results Grow NE Bankan Discovery
16 December 2021	Bankan Project Grows with New Gold Discoveries	30 June 2020	NE Bankan Discovery Guinea Extended 30% To 1.3km In Length
09 December 2021	Predictive Intersects 34m @ 5.5 g/t Au at NE Bankan	27 May 2020	Kaninko Auger Results Double Gold-Mineralised Strike Length
22 November 2021	Further Depth Extension to Bankan High-Grade Gold	07 May 2020	Drilling Update - Kaninko Project, Guinea
03 November 2021	High-Grade Gold Zone Extended Below Resource Pit Shell	30 April 2020	Final Drill Results, Bankan Creek, Kaninko Project, Guinea
28 October 2021	AC Drilling Identifies New Gold Prospects at Bankan	27 April 2020	44m at 2.06g/t Gold from Bankan Creek, Kaninko, Guinea
19 October 2021	NE Bankan High-Grade Gold Zone Reinforced and Extended	15 April 2020	Outstanding Drill Results from New Gold Discovery in Guinea
30 September 2021	3.65 Million-Ounce Bankan Maiden Mineral Resource Estimate	07 April 2020	Guinea Ground Acquired Near Plus-2 Million Oz Gold Deposits
23 September 2021	28m @ 12.1g/t Gold 1.5 Km from NE Bankan	19 March 2020	High-Grades-Broad Widths from Guinea Auger-Trenching Program
16 September 2021	High-Grade Gold Zone Confirmed Up To 400m Vertical Depth	26 February 2020	Up To 8g/t Gold from Power Auger Drilling in Guinea

APPENDIX 1: NEAR-RESOURCE DRILLING RESULTS

Hole No.	Hole Type		UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
		East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM	
BC East												
BCERC0024	RC	394,900	1,173,545	392	64.7	-55.8	80		No significant	intercepts		
BCERC0025	RC	394,855	1,173,522	394	63.1	-55.3	80		No significant	intercepts		
BCERC0026	RC	394,813	1,173,496	396	61.3	-55.9	80	17	9	3.36	30	
								34	2	0.90	2	
								39	3	1.18	4	
BCERC0027	RC	394,769	1,173,473	398	60.2	-55.9	96	85	10	1.43	14	
BCERC0028	RC	394,726	1,173,447	399	61.3	-55.5	84	48	3	1.01	3	
BCERC0029	RC	394,682	1,173,423	398	63.3	-55.4	80	48	1	0.69	1	
BCERC0030	RC	394,639	1,173,397	398	61.3	-56.1	80		No significant			
BCERC0031	RC	394,596	1,173,370	397	59.8	-53.9	80		No significant	•		
BCERC0032	RC	394,552	1,173,347	395	61.1	-55.5	84		No significant	I		
BCERC0033	RC	394,509	1,173,323	394	65.1	-55.6	80		No significant	•		
BCERC0034	RC	395,288	1,173,375	390	62.0	-53.9	86		No significant	•		
BCERC0035	RC	395,245	1,173,346	394	60.9	-54.5	80		No significant			
BCERC0036	RC	395,201	1,173,322	397	60.8	-54.9	80		No significant			
BCERC0037	RC	395,160	1,173,298	398	62.7	-56.0	88		No significant			
BCERC0038	RC	395,114	1,173,272	398	63.2	-55.9	82		No significant			
BCERC0039	RC	395,074	1,173,250	399	63.0	-56.2	82		No significant			
BCERC0040	RC	395,029	1,173,223	401	58.8	-54.1	90		No significant			
BCERC0041	RC	394,985	1,173,195	403	64.0	-55.5	80		No significant			
BCERC0042	RC	394,939	1,173,173	404	62.9	-55.2	80		No significant			
BCERC0043	RC	394,903	1,173,151	403	64.8	-54.6	80		No significant	•		
BCERC0044	RC	395,586	1,173,143	377	62.2	-55.4	80		No significant			
BCERC0045	RC	395,545	1,173,122	379	61.3	-55.0	80	47	No significant	· · ·		
BCERC0046	RC RC	395,507	1,173,099	381	62.8	-54.8	84 102	17 90	1	0.81	1	
BCERC0047		395,465	1,173,072	383	62.9	-56.4				3.32		
BCERC0048	RC	395,422	1,173,047	385	61.7	-54.9	84	52	1	0.57	1	
BCERC0049A	RC	395,379	1,173,024	388	65.7	-55.0 -55.6	80		No significant			
BCERC0050 BCERC0051	RC RC	395,333 395,290	1,173,010	391 394	60.7 62.6	-55.8	84 80		No significant No significant	•		
BCERC0051	RC	395,290	1,172,984 1,172,948	394	61.8	-55.5	80		5			
	RC				65.2	-54.0	80		No significant No significant	•		
BCERC0053A BCERC0054	RC	394,381 394,339	1,173,647 1,173,622	394 394	61.1	-53.5	78		No significant	•		
BCERC0055	RC	394,559	1,173,522	394	60.5	-55.4	80		No significant			
BCERC0056A	RC	394,295	1,173,597	392	58.4	-54.5	80	17	1	4.82	5	
BCERC0050A	RC	394,206	1,173,547	390	62.8	-54.9	80	17	No significant		J	
BCERC0058	RC	394,200	1,173,547	390	59.3	-54.5	80		No significant			
BCERC0059	RC	394,103	1,173,498	388	58.6	-55.6	80		No significant			
BCERC0060	RC	394,077	1,173,490	387	63.6	-54.7	80		No significant			
BCERC0061	RC	393,947	1,173,798	390	60.9	-55.8	84	46	5	0.51	3	
BCERC0062A	RC	393,901	1,173,730	389	62.0	-55.3	84	40	No significant		5	
BCERC0063B	RC	393,862	1,173,772	385	63.0	-53.5	80	13	1	0.63	1	
JULICOUUSD		555,002		500	05.0	5-10		23	1	1.23	1	
BCERC0064	RC	393,816	1,173,723	385	61.3	-54.0	90	7	1	1.54	2	
DELICOUU4		555,010	1,113,123	105	01.0	54.0	50	35	1	0.61	1	
								51	1	1.43	1	
								82	1	0.63	1	
BCERC0065	RC	393,776	1,173,699	384	61.2	-55.4	80	68	5	1.07	5	
BCERC0066	RC	393,730	1,173,672	383	60.8	-55.2	80		No significant			
BCERC0067	RC	393,685	1,173,648	382	59.7	-55.0	80		No significant			
BCERC0068	RC	393,989	1,173,820	391	62.7	-56.3	80		No significant	I		
BCERC0069	RC	394,034	1,173,843	392	60.9	-54.3	80	44	1	0.88	1	
BCERC0070	RC	394,076	1,173,868	393	61.6	-54.3	84	37	1	0.58	1	
BCERC0070	RC	394,295	1,173,000	394	90.3	-55.8	80	51	No significant		ſ	
BCERC0072	RC	394,342	1,174,060	395	90.2	-55.0	80		No significant	· ·		
BCERC0073A	RC	394,399	1,174,059	397	91.9	-55.6	80		No significant	I		
BCERC0073A	RC	394,399	1,174,039	393	58.1	-55.7	84		No significant			
BCERC0078	RC	394,896	1,173,426	399	59.2	-54.9	80		No significant			
BCERC0079	RC	394,890	1,173,420	399	62.5	-55.5	80		No significant	•		
BCERC0080	RC	394,982	1,173,477	395	59.5	-55.8	80		No significant			

		UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gol	d cut-off	
Hole No.	Hole Type	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
SB											
BNEDD0259	DD	396,303	1,172,806	387	87.4	-55.2	172	109	1	0.80	1
BNEDD0260	DD	396,300	1,172,806	387	59.4	-54.8	200		No significan	t intercepts	
BNERC0528	RC	396,524	1,173,415	393	92.0	-55.0	80		No significan	t intercepts	
BNERC0529	RC	396,475	1,173,420	393	88.5	-55.5	80	37	1	0.92	1
								43	6	1.88	11
								52	1	0.83	1
BNERC0530	RC	396,425	1,173,420	393	86.4	-55.4	80	11	2	4.71	9
								18	1	7.37	7
								23	1	1.27	1
BNERC0531	RC	396,375	1,173,420	394	90.8	-55.5	80	14	1	3.15	3
								47	1	0.57	1
								51	2	0.93	2
BNERC0532	RC	396,325	1,173,421	395	88.1	-55.7	84	77	1	4.49	5
BNERC0533	RC	396,275	1,173,420	396	87.0	-54.8	80		No significan		
BNERC0534A	RC	396,230	1,173,420	396	89.1	-55.7	80		No significan	t intercepts	
BNERC0535	RC	396,175	1,173,421	395	89.4	-55.8	80		No significan	t intercepts	
BNERC0536	RC	396,110	1,173,420	393	88.5	-55.0	80	55	1	0.54	1
BNERC0537	RC	396,494	1,173,271	386	89.0	-56.0	80	29	1	5.97	6
BNERC0538	RC	396,447	1,173,271	387	91.6	-54.2	80	54	1	3.26	3
								58	5	2.41	12
BNERC0539	RC	396,396	1,173,272	388	87.4	-55.6	80		No significan	t intercepts	
BNERC0540	RC	396,345	1,173,268	389	95.0	-54.8	80	44	1	0.71	1
								66	1	0.59	1
BNERC0541	RC	396,246	1,173,271	391	88.8	-55.3	120		No significan	t intercepts	
BNERC0542	RC	396,297	1,173,270	390	91.7	-55.2	138		No significan	t intercepts	
BNERC0543	RC	396,198	1,173,266	390	89.8	-55.0	80		No significan	t intercepts	
BNERC0544	RC	396,148	1,173,274	389	86.9	-55.4	80	35	2	0.53	1
SEB											
BNEDD0261	DD	397,448	1,172,867	390	88.7	-56.0	300	70	8	0.53	4
								85	1	0.62	1
								114	1	0.90	1
								200.3	1.1	0.68	1
								226	1	0.59	1
								261	1	1.21	1
BC North											
BCNRC0033	RC	393,391	1,175,541	422	86.2	-55.2	80	13	1	4.63	5
BCNRC0034	RC	RC 393,342 1,175,540 421 88.6 -54.7 8	80	6	1	6.70	7				
								18	4	0.60	2
								42	2	0.97	2
BCNRC0035	RC	393,292	1,175,539	420	94.8	-55.1	80		No significan	t intercepts	
BCNRC0036	RC	393,242	1,175,541	419	89.8	-55.4	80		No significan	t intercepts	
BCNRC0037	RC	393,040	1,175,529	416	92.2	-55.4	80		No significan	t intercepts	
BCNRC0038	RC	392,991	1,175,540	414	91.5	-55.5	80		No significan	t intercepts	
BCNRC0039	RC	391,639	1,175,019	396	62.0	-55.3	120	8	1	2.35	2
BCNRC0040	RC	391,709	1,174,988	401	63.0	-56.7	120	28	1	0.52	1
		351,105		1	000.0	55.1		34	1	6.00	6

APPENDIX 2: JORC CODE TABLE 1

Section 1: Sampling Techniques and Data							
Criteria	JORC Code Explanation	Commentary					
Sampling Technique	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples assayed were cut diamond drill ("DD") core and reverse circulation ("RC") drill chips. Core was cut in half with a core saw where competent and with a knife in soft saprolite in the upper sections of the DD holes. One metre RC chip samples were riffle split producing samples which weighed 2-3kg for submission to the assay laboratory. AC drill samples were collected at 1m intervals and submitted as 2m interval composites. For each 1m sample, an approximate 1 to 1.5 kg sub-sample was riffle split and combined to obtain an approximate 2 to 3 kg "2m-composite" sample for laboratory analysis. Sampling was supervised by qualified geologists. The majority of samples are 1m downhole, with diamond core sampling intervals breaking at lithological contacts where appropriate. All samples were dried, crushed and pulverised at the SGS laboratory in Bamako to produce a 50g fire assay charge with Au analysed by FAA505. Duplicate samples were also retained for re-assay. 					
Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	DD holes included in this announcement were from a EDM2000 multi- purpose rig. Diamond drilling is a combination of PQ, HQ and NQ core. Core was oriented using WELLFORCE orientation tools. RC holes included in this announcement were from a Thor 5000 rig.					
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were recorded by dividing the total length of core returned from each run by the length of the run. Overall core recoveries average around 92%, with the poorest recoveries (averaging 82%) in the first 40m of the drillholes. Overall RC recovery is very good at 90% in the NEB area. However, samples in the first metre have lower than average recovery from the collaring process. Drill holes with poor recoveries were re-drilled within a radius of around 3m from the initial collar. A regularity of the recovery pattern downhole suggests considerable lag between the sample being generated at the hammer and reporting to the cyclone. Drillers do not always adhere to the metre marks on the mast, leading to randomly occurring overlength and underlength samples. The splitters are regularly checked to ensure sample build up is minimised. The RC rig cyclones are regularly cleaned (several times during drilling and between drilling) in order to minimise sample accumulation and contamination, and to increase the recovery rate. No relationship between sample recovery and grade has been analysed. It is unlikely that the grade of the RC drill samples has been biased, however the combination of regularly and randomly occurring sample weight variations will lead to a degradation of the local grade estimate and a higher than necessary nugget, as well as increased inaccuracy in the spatial delimitation of ore waste boundaries.					

Logging	 Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drill samples were logged systematically for lithology, weathering, alteration, veining, structure and minor minerals. Minor minerals were estimated quantitively. The Competent Person considers that the availability of qualitative and quantitative logging has appropriately informed the geological modelling, including weathering and oxidation, water table level and rock type. Photographs have been taken of each core tray and chip tray. A WELLFORCE core orientation device was employed on all drilled core enabling orientated structural measurements to be taken. The Competent Person considers that the level of detail is sufficient
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness	for the reporting of Mineral Resources. The DD samples were collected by longitudinally splitting core using a core saw or a knife where core was very soft and clayey. Routine samples were half-core, with predetermined diamond core duplicates being quarter-core. The sampling method is considered adequate for a DD program of this type. The RC samples were collected by riffle splitting 2-3kg from 1m 30kg
	of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	bulk samples collected directly from the cyclone attached to the drill rig. Sample quality and condition are logged critically and any loss of sample integrity will trigger the hole being immediately stopped. One blind field is inserted into the sample stream and assayed routinely. The sampling procedures are industry standard. RC AC sample weights are recorded immediately after collection from the cyclone. Field duplicate results demonstrated no bias in the sample results. There is considerable scatter in the diamond duplicate pairs suggesting that the mineralisation is likely to be highly variable at a short scale, and this variability needs to be taken into account when planning future sampling programs. Sample sizes are considered to be appropriate to the grain size of the
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 All samples were assayed by SGS. Analysis of gold is by fire assay technique with a lower detection limit of 5ppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted in sequence every 15 samples. Diamond core duplicates were obtained by cutting the half core sample into two quarter core samples. As samples are not homogenised, some variation is expected. Duplicate and standards analysed were all within acceptable limits of expected values. Analysis of this QAQC data demonstrated that the DD/RC data is of acceptable quality to be used for Mineral Resource estimation.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data.	At this stage, the intersections have not been verified independently. No twin holes have been conducted. Drillhole logging is completed on paper sheets and manually entered into a database on site. The data is managed by a company employee, who checks for data validation. Assay results are returned electronically from the assay laboratory and are merged into the assay table of the database. No adjustments or corrections have been made to any assay interval data. All intercepts are reported as drilled

Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All surface drill hole survey information is collected in-house using Leica 18T RTK DGPS system. The project survey grid is tied to the We African GEOID Datum and WGS84 Zone 29N projection. All DD and RC holes have been surveyed by using north-seeking WELLFORCE CHAMP gyro.			
Data Spacing and Distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	like auger anor for RC drilling,	nalies and did no	here were planned on specific targets t always follow a set grid. Generally, ng of 80m in plan view and 40-50m adopted.	
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Most of the drilling is orientated as close as possible to orthogona the dip and strike of the mineralisation. Drilling at some targets is earlier stage and the geometry of mineralisation is currently unkno			
Sample Security	The measures taken to ensure sample security.	Samples are stored in a guarded location close to the nearby Banka Village. Samples are picked up and transported to Bamako by the S truck. Coarse rejects and pulps will be eventually recovered from Se and stored at PDI's office in Kouroussa or at the core shed.			
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	CSA have reviewed the sampling techniques and chain of cu procedures at the project.			
	Section 2 Reporting of Exp	oloration	Results		
Mineral Tenement and		The Bankan Gold Project consists of four <i>Permis de Recherche Industrielle (Or)</i> as follows:			
Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	Industrielle (Or) as follows:		
	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national) as follows: Area	s of four <i>Permis de Recherche</i> Holder	
	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Industrielle (Or) as follows:		
	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting	Industrielle (Or Permit Name Kaninko Saman) as follows: Area (km²) 98.2158 99.74845	Holder Mamou Resources SARLU Mamou Resources SARLU	
	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Industrielle (Or Permit Name Kaninko) as follows: Area (km ²) 98.2158	Holder Mamou Resources SARLU	
	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence	Industrielle (Or Permit Name Kaninko Saman Bokoro Argo The permits are between 10°32 and southwest The Kaninko, S subsidiaries of the Australian whereby PDI ca payment of US decision to mir production. The have been regis Parts of the Kar deposits, are sit Agriculture and	Area (km²) 98.2158 99.74845 99.74845 99.9785 57.5422 e located between '26"N and 10°52'C of the town of Ko aman and Bokorc PDI. The Argo per registered holding an progressively e \$100,000 and will be in exchange fo e expiry dates for owever PDI has su stered by the Min hinko and Saman tuated in Buffer Zo	Holder Mamou Resources SARLU Mamou Resources SARLU Kindia Resources SARLU	

		within and adjacent to the Mt Nimba World Heritage Site). PDI is currently undertaking detailed sustainability studies (including an Environmental and Social Impact Assessment) and a Pre-Feasibility Study to facilitate the permitting process for the Project.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	PDI is not aware of any significant previous gold exploration over the NEB/BC area.
		Artisanal miners have extracted an unknown quantity of gold from shallow hand dug pits and shafts, with panning and loaming used to identify mineralized areas.
Geology	Deposit type, geological setting and style of mineralisation.	The Bankan deposits are hosted in Paleoproterozoic rocks of the Birimian Supergroup in the Siguiri Basin, which is host to several significant large active gold mining operations.
		The predominant rock types consist of felsic intrusives including granite and tonalite, with mafic to intermediate volcanics and intrusives. Metasediments including marble, chert and schists have also been observed.
		Weathering has formed a deep saprolite profile, with a pisolitic and nodular lateritic cover which hosts remobilised gold, generally above the primary deposits or dispersed a few tens of metres laterally.
		NEB and near-resource targets: The SB and SEB prospects correspond to a connection zone between major structural directions. The N-S direction on which the NEB deposit is located (and which corresponds to the direction of the deformation corridor that extends as far as the Argo permit) and the WNW-ESE direction that carries the BC deposit. NEB North and NEB East are prospects that lie along the axis of the N- S deformation beam. The NE-SW structural direction (on which the 800W prospect is developed) combines with the N-S and WNE-ESE directions. In this three-way structural pattern, mineralisation occurs mainly along lithostructural contacts between felsic intrusives / basalt, felsic intrusives / metasediments (NEB) and felsic intrusives / skarn / metasediments (BC). These contacts are generally deformed and form corridors of intense deformation in which hydrothermal alteration develops, as in the case of NEB, SB and SEB, which are rich in veins of quartz, pyrite, pyrrhotite, sericite and chlorite. In the case of NEB, the lithostructural contact correspond to a thrust.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Appendix 1.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Sampling was generally in 1m intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.5g/t Au cut-off grade.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralised intervals are reported on a weighted average basis.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Drill holes are typically inclined at 55° to the east, in order to target mineralised trend structures that appear to plunge towards the west and develop along a generally N-S axis. The dip of these different mineralised structures appears to vary between 45° and 60°, implying a down-hole intercept length of the true thickness. In the WNW-ESE corridor, drill holes are generally inclined 55° to the north-east in order to intercept mineralisation plunging 45-60° to the south-west, implying a down-hole intercept length of the true thickness.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are included in this release.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Appendix 1.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to the text in the announcement for information on follow-up and/or next work programs.