

ASX: ITM

BOARD & MANAGEMENT

Glenn Davis - Chair Michael Schwarz - MD Gary Ferris - NED Jarek Kopias - Co Sec

CAPITAL STRUCTURE

Ordinary Shares Issued 96.1M

Options Issued 3.0M

Performance rights Issued 0.3M

CONTACT

Address: Level 3, 170 Greenhill Rd PARKSIDE SA 5063

Email: info@itechminerals.com.au

Website: www.itechminerals.com.au

Telephone: +61 2 5850 0000

Location: Eyre Peninsula Project, South Australia

Contact: Michael Schwarz Managing Director

Ph: +61 2 5850 0000
W: www.itechminerals.com.au

KAOLIN RESULTS UPGRADE REE CONTENT BY 176% AT CARALUE BLUFF

iTech Minerals Drilling, Eyre Peninsula, South Australia (2022)

SUMMARY

- Rare earth element content of high purity kaolin upgraded by 176% during beneficiation
- Laboratory results on the -45-micron fraction confirm widespread, thick intervals of high purity white kaolin mineralisation with very low contained deleterious elements
- Significant results from -45-micron fractions include:
 - CBAC22-200 5m @ 37.6% Al₂O₃, 0.6% Fe₂O₃, 0.28% TiO₂,
 0.07% CaO and 1902 ppm TREO from 11m (62% yield)
 - CBAC22-203 5m @ 36.9% Al₂O₃, 0.5% Fe₂O₃, 1.08% TiO₂, 0.02% CaO and 1241 ppm TREO from 5m (58% yield)
 - CBAC22-144 8m @ 36.8% Al₂O₃, 0.22% Fe₂O₃, 0.78% TiO₂,
 0.02% CaO and 1687 ppm TREO from 10m (70% yield)
 - CBAC22-138 14m @ 36.4% Al₂O₃, 0.88% Fe₂O₃, 0.70% TiO₂,
 0.07% CaO and 839 ppm TREO from 10m (67% yield)
 - CBAC22-162 6m @ 35.9% Al₂O₃, 0.61% Fe₂O₃, 1.19% TiO₂,
 0.04% CaO and 1679 ppm TREO from 14m (72% yield)
- Results suggest potential to leach upgraded REEs from high purity kaolin fraction as part of the kaolin processing flow sheet
- Low CaO suggests low acid consumption in REE leaching stage
- Mineralisation is rich in key magnet REEs (Nd-Pr-Dy-Tb) averaging 25% of the REE basket

"The Caralue Bluff kaolin test work shows that the standard kaolin beneficiation process significantly upgrades the REE content of the high purity kaolin by 176%. iTech has the option to incorporate the extraction of REEs into the normal kaolin processing flow sheet, spreading capital and operating costs across both commodities, with potentially significant cost savings."

Managing Director Mike Schwarz

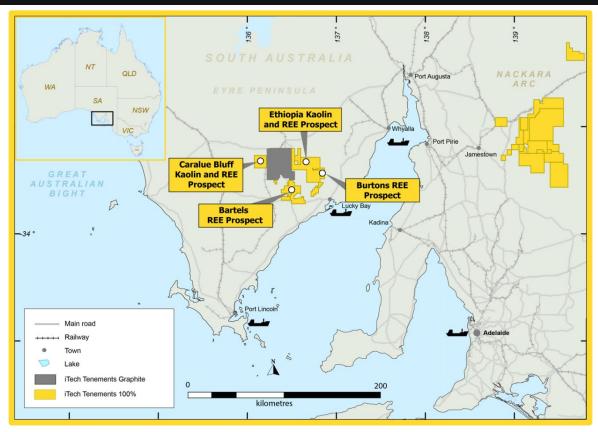


Figure 1. Location of the Caralue Bluff Prospect - Eyre Peninsula, South Australia

	Significant Interval (m)	Mass (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	K₂O (%)	MnO (%)	Na₂O (%)	MgO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 µm TREO (ppm)	Beneficiation (%)
Number	122	122	122	122	122	122	122	122	122	122	122	122	122	122
Minimum	2	16%	0.2	46.2	15.8	0.0	0.3	0.0	0.0	0.0	0.1	216	542	52%
Maximum	32	75%	9.7	70.1	37.6	1.1	5.0	0.1	2.2	3.4	2.2	2252	3771	312%
Mean	8	41%	1.6	50.8	31.9	0.1	1.9	0.0	0.1	0.3	0.8	526	917	174%
Median	8	44%	1.5	50.6	32.8	0.1	2.3	0.0	0.1	0.3	0.9	489	856	176%

Table 1. Summary statistics for significant intervals of reported -45µm fractions

Kaolin and REE Potential

The Caralue Bluff kaolin and REE prospect is a relatively unique Australian prospect in that it is a high purity kaolin prospect that contains appreciable amounts of rare earth elements. The combination of the two commodities has potential synergies that could potentially lead to a low-cost base to produce both high purity kaolin and a REE concentrate/precipitate.

High purity kaolin clay hosted REE mineralisation - benefits and synergies

Low mining and operating costs

- Soft clay material, free dig, no blasting
- Elevated magnet REE product content (25%) in high purity kaolin source material
- Surface mining (~0-30m)
- Minimal stripping of overburden material
- Progressive rehabilitation of mined areas

Processing

- No/limited crushing or milling
- Simple process plant
- Kaolin beneficiation upgrades REEs by 176%
- Leaching to remove kaolin impurities and extract REEs in kaolin processing flow sheet

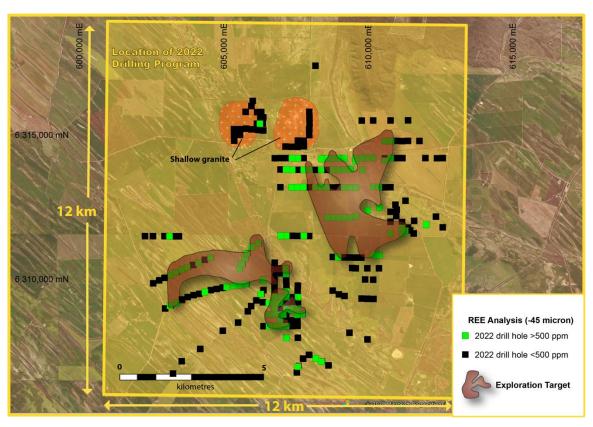
Potential Mine Product

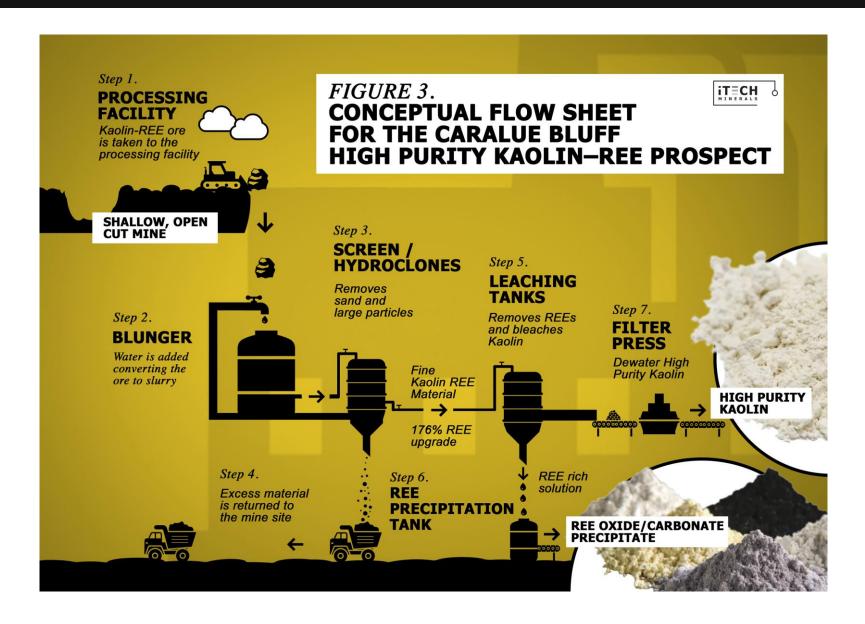
- High purity kaolin product for use in production of high purity alumina, ceramics, paper coating, cement additives and advanced technological applications
- Mixed high-grade rare earths precipitate, for feedstock directly into rare earth separation plant, low La and Ce and radioactivity content

Caralue Bluff Prospect

The Caralue Bluff Prospect contains an Exploration Target of 110-220 Mt @ 635-832 ppm TREO and 19-22% Al₂O₃. The Exploration target is based on 80 drill holes, from a total program of 260, across an area of approximately 12 km x 12 km. Importantly it remains open in multiple directions allowing for possible expansion in upcoming drill programs.

Investors should be aware that the potential quantity and grade of the Exploration Targets reported are conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.




Figure 2. Outline of Exploration Target at the Caralue Bluff Prospect – Eyre Peninsula, South Australia

The Exploration Target also comprises a kaolin component (-45 μ m) which is in the ranges as shown in Table 2, below. Assays are derived from a range of composite samples from holes within the 'outline' which were screened to -45 μ m and assayed.

	Tonne	Tonnes (Mt)		Grade (TREO ppm)			de (Al ₂ 0	O₃ %)	Recovery (%)		
	Lower	Upper	Av.	Min.	Max.	Av.	Min.	Max.	Av.	Min.	Max.
Exploration Target (-45 µm)	110	220	867	812	961	32.8	31.7	33.3	45	44	55

Table 1. -45 μm REE-Kaolin Exploration Target showing upper and lower ranges

Next Steps

As announced on 7 October 2022, preliminary leaching test work using standardised leach conditions for ionically bound and colloidal rare earth elements reported maximum recoveries of the magnet REEs of

- Nd − 28%
- Pr 31%
- Dy 65%
- Tb 57%

iTech has now commenced stage two leaching trials with the aim of increasing recoveries by testing the effects of increasing acid concentration and/or increasing leaching temperature. Results are expected next month.

All leaching test work undertaken to date has been done on the whole drill hole sample. With kaolin test work showing a 175% upgrade of REEs in the minus 45-micron fraction, future rounds of metallurgy will assess the recovery of REEs from this fraction, as shown in the conceptual flow sheet in figure 3.

Table 3. Significant Kaolin and REE intersections of -45-micron fraction sorted by Al₂O₃ grade

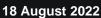
Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_200	11	16	5	62%	0.57	48	37.6	0.07	0.28	1198	1902	159%
CBAC22_203	4	9	5	58%	0.46	47	36.9	0.02	1.08	718	1241	173%
CBAC22_144	10	18	8	70%	0.22	48	36.8	0.02	0.78	1261	1687	134%
CBAC22_183	11	16	5	49%	1.48	48	36.6	0.04	0.12	433	905	209%
CBAC22_124	12	17	5	52%	0.75	49	36.4	0.04	0.30	420	863	205%
CBAC22_138	10	24	14	67%	0.88	48	36.4	0.07	0.70	329	839	255%
CBAC22_199	14	45	31	51%	1.13	47	36.4	0.04	1.16	642	1140	178%
CBAC22_070	10	32	22	54%	0.54	49	36.4	0.02	0.46	245	590	241%
CBAC22_087	14	20	6	70%	1.55	46	36.0	0.07	1.57	866	1679	194%
CBAC22_239	14	27	13	54%	1.15	48	36.0	0.05	0.70	520	1110	213%

Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_189	11	18	7	61%	1.38	48	35.9	0.03	1.08	334	921	276%
CBAC22_162	14	24	10	72%	0.61	48	35.9	0.04	1.19	965	1302	135%
CBAC22_161	1	18	17	46%	0.66	49	35.9	0.04	0.52	469	634	135%
CBAC22_088	11	21	10	57%	0.55	49	35.7	0.05	0.66	431	759	176%
CBAC22_139	11	15	4	75%	1.28	48	35.7	0.05	0.81	1117	576	52%
CBAC22_184	10	17	7	55%	1.51	49	35.6	0.08	1.06	425	919	216%
CBAC22_202	4	28	24	50%	0.44	49	35.6	0.02	0.98	744	1342	180%
CBAC22_201	5	26	21	47%	2.57	47	35.6	0.06	0.76	676	1504	222%
CBAC22_229	4	35	31	46%	0.89	49	35.6	0.05	1.00	818	1163	142%
CBAC22_033	11	15	4	41%	0.87	49	35.5	0.04	1.02	347	673	194%
CBAC22_082	20	24	4	52%	0.64	50	35.5	0.05	0.32	437	894	205%
CBAC22_214	9	17	8	48%	0.99	49	35.5	0.05	0.95	414	678	164%
CBAC22_251	24	30	6	62%	0.76	49	35.5	0.03	1.35	619	672	109%
CBAC22_156	9	13	4	58%	1.32	49	35.3	0.05	0.42	538	899	167%
CBAC22_125	5	19	14	48%	1.10	49	35.3	0.06	0.51	655	769	117%
CBAC22_250	17	33	16	47%	0.96	49	35.2	0.02	1.07	533	772	145%
CBAC22_055	11	19	8	69%	1.67	48	35.2	0.05	1.72	733	888	121%
CBAC22_260	17	31	14	51%	0.51	49	35.1	0.03	1.08	463	817	176%
CBAC22_077	4	12	8	55%	0.26	49	35.0	0.09	1.31	2252	3771	167%
CBAC22_240	17	26	9	50%	0.19	50	34.8	0.04	1.31	594	741	125%
CBAC22_170	20	25	5	46%	0.78	49	34.7	0.07	0.73	1018	1491	146%
CBAC22_149	5	20	15	51%	1.05	50	34.7	0.08	0.55	325	565	174%
CBAC22_124	27	39	12	58%	1.90	48	34.7	0.05	1.56	648	1202	185%
CBAC22_058	7	11	4	55%	0.99	50	34.5	0.06	1.03	615	868	141%

Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_176	15	18	3	48%	0.82	50	34.3	0.04	0.56	451	793	176%
CBAC22_163	3	8	5	44%	1.04	50	34.3	0.04	1.20	517	735	142%
CBAC22_091	15	29	14	52%	0.49	51	34.3	0.06	1.19	436	658	151%
CBAC22_112	23	27	4	39%	0.56	51	34.3	0.25	0.55	373	767	206%
CBAC22_155	16	22	6	42%	0.58	50	34.3	0.05	1.20	343	689	201%
CBAC22_207	3	30	27	49%	1.38	49	34.2	0.07	0.87	1592	3071	193%
CBAC22_084	11	27	16	49%	0.76	51	34.1	0.05	0.90	539	789	146%
CBAC22_076	12	19	7	50%	0.46	51	34.0	0.05	0.74	464	830	179%
CBAC22_073	7	11	4	54%	1.15	51	34.0	0.05	1.01	674	936	139%
CBAC22_163	18	30	12	42%	0.60	50	33.9	0.05	0.87	497	789	159%
CBAC22_203	14	22	8	47%	0.58	50	33.8	0.02	0.75	474	910	192%
CBAC22_039	17	23	6	62%	2.87	47	33.7	0.11	1.76	465	692	149%
CBAC22_102	17	25	8	51%	1.72	49	33.7	0.09	1.00	374	666	178%
CBAC22_209	2	5	3	35%	2.40	48	33.7	0.32	1.86	300	545	182%
CBAC22_083	7	19	12	59%	0.83	50	33.6	0.06	1.56	1210	2253	186%
CBAC22_208	9	26	17	41%	2.67	49	33.6	0.05	0.86	776	1462	188%
CBAC22_119	12	22	10	47%	1.28	50	33.6	0.06	0.76	382	849	222%
CBAC22_204	7	12	5	45%	4.35	47	33.5	0.07	0.77	403	695	172%
CBAC22_116	11	20	9	51%	1.21	51	33.4	0.05	0.49	277	865	312%
CBAC22_197	8	12	4	35%	1.11	51	33.4	0.05	1.18	444	560	126%
CBAC22_230	10	13	3	31%	0.95	52	33.4	0.06	0.65	815	1153	141%
CBAC22_056	13	28	15	51%	1.70	50	33.3	0.06	1.06	633	1015	160%
CBAC22_123	5	24	19	54%	1.57	51	33.3	0.06	1.18	524	1014	194%
CBAC22_210	10	20	10	38%	1.10	51	33.2	0.04	0.93	370	638	172%

Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_057	24	28	4	50%	0.65	51	33.1	0.04	0.68	312	551	177%
CBAC22_013	2	18	16	45%	3.57	49	33.0	0.19	0.75	670	1166	174%
CBAC22_146	11	15	4	34%	1.17	51	32.8	0.07	0.72	216	569	264%
CBAC22_158	4	15	11	34%	1.72	50	32.7	0.05	0.84	510	1049	206%
CBAC22_121	23	26	3	59%	0.70	50	32.7	0.05	1.73	1316	1916	146%
CBAC22_257	23	36	13	55%	1.04	52	32.5	0.04	0.84	329	688	209%
CBAC22_174	11	14	3	35%	1.02	51	32.1	0.06	0.81	603	1389	230%
CBAC22_105	17	39	22	49%	1.12	52	32.0	0.08	0.66	547	1154	211%
CBAC22_160	1	22	21	34%	5.35	49	32.0	0.06	0.79	713	1103	155%
CBAC22_086	18	26	8	55%	1.11	52	31.9	0.07	0.85	751	1545	206%
CBAC22_109	9	19	10	39%	1.43	52	31.9	0.04	1.28	400	670	168%
CBAC22_154	4	16	12	26%	1.34	52	31.7	0.08	1.04	453	984	217%
CBAC22_220	12	17	5	35%	1.75	53	31.6	0.13	1.00	377	957	254%
CBAC22_259	12	25	13	42%	2.07	52	31.6	0.06	1.32	526	764	145%
CBAC22_168	10	23	13	33%	2.05	51	31.5	0.10	0.97	456	889	195%
CBAC22_159	4	8	4	30%	1.98	51	31.5	0.04	0.91	364	682	187%
CBAC22_165	6	11	5	33%	3.72	51	31.5	0.09	0.30	408	591	145%
CBAC22_078	22	25	3	33%	0.94	53	31.4	0.08	0.36	260	670	258%
CBAC22_092	15	25	10	45%	1.94	51	31.4	0.25	1.05	676	1334	197%
CBAC22_145	20	23	3	30%	0.85	54	31.3	0.14	0.10	346	574	166%
CBAC22_153	6	21	15	36%	2.49	51	31.3	0.08	1.01	465	1199	258%
CBAC22_205	7	15	8	34%	4.20	50	31.2	0.08	0.75	278	669	241%
CBAC22_104	6	36	30	40%	1.50	52	31.2	0.12	0.78	627	1005	160%
CBAC22_107	7	27	20	39%	1.71	52	31.1	0.08	1.02	660	1206	183%

Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_157	14	17	3	30%	3.15	50	31.1	0.16	1.13	239	574	240%
CBAC22_169	7	25	18	31%	1.38	53	30.8	0.08	0.51	682	1081	159%
CBAC22_074	4	11	7	50%	1.29	52	30.8	0.21	1.43	1711	2917	171%
CBAC22_214	20	28	8	43%	6.89	47	30.8	0.05	0.61	1053	1123	107%
CBAC22_132	16	25	9	33%	1.70	53	30.8	0.10	0.51	380	664	175%
CBAC22_222	4	23	19	35%	3.07	52	30.8	0.08	0.72	497	1021	206%
CBAC22_129	13	26	13	60%	2.52	51	30.6	0.11	2.21	673	1187	176%
CBAC22_256	23	34	11	44%	2.54	52	30.4	0.10	1.03	352	760	216%
CBAC22_034	9	41	32	36%	2.86	51	30.4	0.07	1.01	543	1187	219%
CBAC22_085	19	25	6	40%	1.70	54	30.4	0.18	0.52	318	552	173%
CBAC22_206	7	30	23	37%	4.09	49	30.2	0.07	1.10	1585	2503	158%
CBAC22_150	7	13	6	38%	2.39	52	30.1	0.10	1.62	541	1195	221%
CBAC22_156	21	25	4	39%	4.52	50	30.0	0.10	1.12	317	623	197%
CBAC22_090	24	32	8	43%	3.05	52	29.8	0.19	1.13	392	690	176%
CBAC22_148	27	30	3	36%	2.30	53	29.8	0.13	1.04	755	1377	182%
CBAC22_080	7	10	3	36%	1.48	54	29.7	0.07	1.41	632	1144	181%
CBAC22_073	19	23	4	29%	1.88	54	29.3	0.34	0.34	450	674	150%
CBAC22_218	6	14	8	36%	2.54	53	29.3	0.14	1.40	690	1316	191%
CBAC22_258	14	23	9	32%	3.03	53	29.3	0.42	0.86	583	788	135%
CBAC22_116	24	31	7	46%	1.95	55	29.2	0.09	0.46	332	708	213%
CBAC22_217	2	8	6	30%	6.15	50	29.2	0.06	0.78	436	599	137%
CBAC22_103	17	38	21	33%	2.07	55	28.8	0.25	0.99	653	1350	207%
CBAC22_093	22	25	3	25%	2.18	54	28.2	0.86	0.64	404	633	157%
CBAC22_159	20	24	4	16%	3.73	54	27.9	0.35	0.59	708	608	86%



Drill hole	From (m)	To (m)	Interval (m)	Recovery (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	CaO (%)	TiO ₂ (%)	Head TREO (ppm)	-45 micron TREO (ppm)	REE Beneficiation (%)
CBAC22_223	8	12	4	26%	3.01	54	27.9	0.06	0.76	234	601	257%
CBAC22_255	26	31	5	39%	4.97	52	27.8	0.09	0.73	701	992	142%
CBAC22_228	3	8	5	25%	5.66	52	27.4	0.07	1.22	480	646	135%
CBAC22_213	2	8	6	25%	9.51	48	27.1	0.12	0.69	406	711	175%
CBAC22_070	36	48	12	29%	1.29	58	27.0	0.22	0.59	339	760	224%
CBAC22_135	16	20	4	31%	6.62	51	26.9	0.20	1.06	434	830	191%
CBAC22_215	13	16	3	25%	7.15	52	26.9	0.31	0.54	414	612	148%
CBAC22_211	5	17	12	25%	6.36	52	26.4	0.26	0.75	1079	2081	193%
CBAC22_097	29	32	3	32%	6.47	52	26.4	0.44	0.80	327	542	166%
CBAC22_165	16	20	4	45%	5.23	55	26.3	0.21	0.85	476	668	140%
CBAC22_062	13	17	4	22%	1.36	60	25.4	0.17	0.45	409	576	141%
CBAC22_171	20	27	7	23%	2.64	57	25.2	0.26	0.69	586	840	143%
CBAC22_060	24	26	2	20%	3.30	58	25.2	0.60	0.53	310	615	198%
CBAC22_228	13	15	2	27%	8.30	51	24.1	0.37	1.19	473	870	184%
CBAC22_150	18	25	7	24%	9.72	52	21.4	1.13	0.69	766	1310	171%
CBAC22_091	5	8	3	24%	2.33	70	15.8	0.27	0.98	738	1060	144%

For further information please contact the authorising officer Michael Schwarz:

iTech Minerals

Michael Schwarz, FAusIMM, AIG Managing Director

E: mschwarz@itechminerals.com.au

Ph: +61 2 5850 0000

W: www.itechminerals.com.au

ABOUT ITECH MINERALS LTD

iTech Minerals Ltd is a newly listed mineral exploration company exploring for and developing battery materials and critical minerals within its 100% owned Australian projects. The company is exploring for kaolinite-halloysite, regolith hosted ion adsorption clay rare earth element mineralisation and developing the Campoona Graphite Deposit in South Australia. The company also has extensive exploration tenure prospective for Cu-Au porphyry mineralisation, IOCG mineralisation and gold mineralisation in South Australia and tin, Tungsten, and polymetallic Cobar style mineralisation in New South Wales.

GLOSSARY

CREO = Critical Rare Earth Element Oxide

ET – Exploration Target

HREO = Heavy Rare Earth Element Oxide

LREO = Light Rare Earth Element Oxide

MREO = Magnet Rare Earth Element Oxide

REE = Rare Earth Element

REO = Rare Earth Element Oxide

TREO = Total Rare Earth Element Oxide

%NdPr = Percentage amount of neodymium and praseodymium as a proportion of the total amount of rare earth elements

wt% = Weight percent

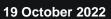
µm = micron or millionth of a metre or a thousandth of a millimetre

-45µm fraction = The portion of a drill sample that passes through a sieve that has hole sizes of 45 microns (45/1000th of a millimetre). This is generally the clay rich fraction.

COMPETENT PERSON STATEMENT

The information which relates to exploration results is based on and fairly represents information and supporting documentation compiled by Michael Schwarz. Mr Schwarz has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Schwarz is a full-time employee of iTech Minerals Ltd and is a member of the Australian Institute of Geoscientists and the Australian Institute of Mining and Metallurgy. Mr Schwarz consents to the inclusion of the information in this report in the form and context in which it appears.

This announcement contains results that have previously released as "Replacement Prospectus" on 19 October 2021, "Rare Earth Potential Identified at Kaolin Project" on 21 October 2021, "Rare Earth Potential Confirmed at Kaolin Project" on 12 November 2021, "New Rare Earth Prospect on the Eyre Peninsula" on 29 November 2021, "Positive Results Grow Rare Earth Potential at Kaolin Project" on 13 December 2021, "More Positive Rare Earth Results - Ethiopia Kaolin Project" on 12 January 2022, "Exploration Program Underway at EP Kaolin-REE Project" on 19 January 2022, "Eyre Peninsula Kaolin-REE Drilling Advancing Rapidly" on 16 February 2022, "Ionic Component Confirmed at Kaolin-REE Project" on 9 March 2022, "Drilling confirms third REE Prospect at Bartels - Eyre Peninsula" on 22 March 2022, "Eyre Peninsula Kaolin-REE Maiden Drilling Completed" on 7 April 2022, "Significant REEs discovered at Caralue Bluff" on 14 April 2022, "Substantial REEs in first drill holes at Ethiopia, Eyre Peninsula" on 18 May 2022, "Caralue Bluff and Ethiopia Prospects Continue to Grow" on 20 June 2022, "New REE drill results expand Caralue Bluff Prospect" on 18 July 2022, "More thick, high grade REEs at Caralue Bluff" on 22 July 2022, "Final Results from Caralue Bluff Prospect" on 11 August 2022, "Exploration Target defined at Caralue Bluff" on 18 August 2022 and "Clay Hosted REE Projects Progress to Second Round of Testing" on 7 October 2022 . iTech confirms that the Company is not aware of any new information or data that materially affects the information included in the announcement.



JORC 2012 EDITION - TABLE 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All samples were collected through a cyclone into plastic bags at 1 m intervals, then subsampled into ~2kg samples within numbered calico bags, composite samples were created from selected 1 metre intervals, which have been sent for chemical analyses. Composite intervals were created based upon the geology and colour. As such the composite intervals created vary in length from 2m to 5m. Composite samples weigh roughly 1-2 kg for initial test work. The Competent Person has reviewed referenced publicly sourced information through the report and considers that sampling was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.
Drilling Techniques	Drill type (e.g., core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 McLeod Drilling used a Reverse Circulation Aircore drill rig mounted on a 6-wheel drive Toyota Landcruiser. Aircore drilling uses an 76mm aircore bit with 3 tungsten carbide blades and is a form of drilling where the sample is collected at the face and returned inside the inner tube. The drill cuttings are removed by the injection of compressed air into the hole via the annular area between the inner tube and the drill rod. Aircore drill rods are 3 m NQ rods. All aircore drill holes were between 2m and 60m in length. The Competent Person has inspected the drilling program and considers that drilling techniques was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.

ASX: ITM

Criteria	JORC Code Explanation	Commentary
Drill Sample Recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No assessment of recoveries was documented. All efforts were made to ensure the sample was representative. No relationship is believed to exist, but no work has been done to confirm this.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All samples were geologically logged to include details such as colour, grain size and clay content. Collars were located using a handheld GPS As this is early-stage exploration, collar locations will have to be surveyed to be used in mineral resource estimation. The holes were logged in both a qualitative and quantitative fashion relative to clay content.
Sub- Sampling Techniques and Sample Preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All samples were collected through a cyclone into plastic bags at 1 m intervals, then subsampled into ~2kg samples within numbered calico bags, composite samples were created from selected 1 metre intervals, which have been sent for chemical analyses. A full profile of the bag contents was subsampled to ensure representivity. All samples were dry. Composite intervals were created based upon the geology and colour. As such the composite intervals created vary in length from 2m to 5m. Composite samples weigh roughly 1-2 kg for initial test work. Kaolin rich intervals were subsampled and submitted for kaolin analysis at Bureau Veritas using the following method Screen with 45-micron screen using cold water Retain both fractions Dry each fraction at low temp overnight Record masses Riffle split a 10gm (+45 and -45 fraction) for whole rock assay (14 element oxides), LOI and REEs.

19 October 2022

ASX: ITM

Criteria JORC Code Explanation

Quality of Assay Data and Laboratory Tests

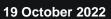
- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

Commentary

- Whole Rock and REE analysis was undertaken by Bureau Veritas using both the XRF (XRF4B) and ICP-MS (IC4M) techniques.
- Both the +45 and -45 fraction were analysed for REEs and the bulk sample result was calculated from the relative proportions and REE values of each fraction.

XRF (Detection limits in ppm)

Al (100) As (10) Ba (10) Ca (100) Cr (10) Cu (10) Fe (100) K (100) Mg (100) Mn (10) Na (100) Ni (10) P (10) Pb (10) S (10) Si (100) Ti (100) U (10) W (10) Y (10) Zn (10) Zr (10)


LA-ICP-MS (Detection limits in ppm)

Ag (0.1) As (0.2) Ba (0.5) Be (0.2) Bi (0.02) Cd (0.1) Co (0.1) Cr (1) Cs (0.01) Cu (2) Dy (0.01) Er (0.01) Ga (0.1) Gd (0.01) Hf (0.01) Ho (0.01) In (0.05) La (0.01) Mn (1) Mo (0.2) Nb (0.01) Nd (0.01) Ni (2) Pb (1) Rb (0.05) Re (0.01) Sb (0.1) Sc (0.1) Se (5) Sm(0.01) Sr (0.1) Ta (0.01) Tb (0.01) Te (0.2) Th (0.01) Ti (1) Tm (0.01) U (0.01) V (0.1) W (0.05) Y (0.02) Yb (0.01) Zn (5) Zr (0.5)

- Selected samples that didn't require screening of the -45µm fraction were submitted to ALS Perth using their ME-MS61 technique for multielements. As such the digestion of REE's is not complete.
- A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples meeting this criterion are then analyzed by inductively coupled plasma-mass spectrometry. Results are corrected for spectral interelement interferences.
- NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "near-total" is used, depending on the sample matrix, not all elements are quantitatively extracted.

Criteria	JORC Code Explanation			Commentary	/
		•	elements leachable	r the additional will represent th portion of the ra	ne acid
		•	elements. Detection	Limits are as fo	llows
			Element	Unit	DL
			Ag	ppm	0.01
			Al	%	0.01
			As	ppm	0.2
			Ва	ppm	10
			Be	ppm	0.05
			Bi	ppm	0.01
			Ca	%	0.01
			Cd	ppm	0.02
		L	Ce	ppm	0.01
		-	Co	ppm	0.1
		-	Cs	ррт	0.05
		-	Cu	ррт	0.2
		-	Fe	%	0.01
		-	Ga	ppm	0.05
		-	Ge	ppm	0.05
		F	Hf	ppm	0.1
		-	In	ppm	0.005
		ŀ	K	%	0.01
			La	ppm	0.5
		l	Li	ppm	0.2
			Mg	%	0.01
			Mn	ppm	5
			Мо	ppm	0.05
			Na	%	0.01
			Nb	ppm	0.1
			Ni	ppm	0.2
		L	P Pb	ppm	10
		-	Rb	ppm	0.5
		L	Re	ррт	0.002
		-	S	%	0.01
		-	Sb	ppm	0.05
		-	Sc	ppm	0.1
		-	Se	ppm	1
		F	Sn	ppm	0.2
		ŀ	Sr	ppm	0.2
		-	Ta	ppm	0.05
		l	Te	ppm	0.05
			Th	ppm	0.2
			Ti	%	0.005
			TI	ppm	0.02
			U	ppm	0.1
			V	ppm	1
			W	ррт	0.1
			Y	ppm	0.1
			Zn	ppm	2

Criteria	JORC Code Explanation	Commentary
		Zr ppm 0.5
		Dy ppm 0.05
		Er ppm 0.03
		Eu ppm 0.03
		Gd ppm 0.05
		Ho ppm 0.01
		Lu ppm 0.01
		Nd ppm 0.1
		Pr ppm 0.03
		Sm ppm 0.03
		Tb ppm 0.01 Tm ppm 0.01
Verification of Sampling and Assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification of sampling, no use of twinned holes. Data is exploratory in nature and is compiled into excel spreadsheets. Rare earth element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as in the industry standard. TREO = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Lu₂O₃ + Y₂O₃ CREO = Nd₂O₃ + Eu₂O₃ + Tb₄O₇ + Dy₂O₃ + Y₂O₃ LREO = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃ + Dy₂O₃ + Ho₂O₃ + Eu₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + He₂O₃ + Fr₆O₁₁ + Tb₄O₇ + Dy₂O₃ MREO = Nd₂O₃ + Pr₆O₁₁ + Tb₄O₇ + Dy₂O₃ NdPr = Nd₂O₃ + Pr₆O₁₁ TREO-Ce = TREO - CeO₂ % NdPr = NdPr/ TREO %LREO = LREO/TREO %LREO = LREO/TREO
Location of Data Points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The location of drill hole collar was undertaken using a hand-held GPS which has an accuracy of +/- 5m using UTM MGA94 Zone 53. The quality and adequacy are appropriate for this level of exploration.
Data Spacing and Distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 There is no pattern to the sampling and the spacing is defined by access for the drill rig, geological parameters, and land surface. Data spacing and distribution are sufficient to establish the degree of geological and grade continuity for future drill planning, but not for resource reporting.

ASX RELEASE

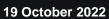
Criteria	JORC Code Explanation	Commentary
	applied.	
Orientation of Data in Relation to Geological Structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is believed that the drilling has intersected the geology at right angles, however, it is unknown whether the drill holes have interested the mineralisation in a perpendicular manner. The mineralised horizon is obscured by a thin veneer of transported material. It is believed there is no bias has been introduced.
Sample Security	The measures taken to ensure sample security.	 All samples have been in the custody of iTech employees or their contractors. Best practices were undertaken at the time. All residual sample material (pulps) is stored securely.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	None undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral Tenement and Land Tenure Status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Tenement status confirmed on SARIG. The tenements are in good standing with no known impediments.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Relevant previous exploration has been undertaken by Shell Company of Australia Pty Ltd, Adelaide Exploration Pty Ltd and Archer Materials Ltd
Geology	Deposit type, geological setting and style of mineralisation.	 The tenements are within the Gawler Craton, South Australia. iTech is exploring for porphyry Cu-Au, epithermal Au, kaolin and halloysite and REE deposits. This release refers to kaolin mineralisation and ion adsorption rare earth elements mineralisation related to lateritic weathering processes on basement rock of the Gawler Craton, in particular the Palaeoproterozoic Miltalie Gneiss and Warrow Quartzite.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Downhole length and interception depth Hole length If the exclusion of this information is 	See Appendix 1 for drill hole information. Exploration results have been released in previous announcements by the company.

ASX: ITM


Criteria	JORC Code Explanation	Commentary
	justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data Aggregation Methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 REE analysis intervals, on the -45 micron fraction, were aggregated using downhole sample length weighted averages with a lower cut-off of 500 ppm TREO with no upper limit applied. A maximum internal dilution of 4m @ 200 ppm TREO was used. No high cut has been applied.
Relationship Between Mineralisation Widths and Intercept Lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g., 'downhole length, true width not known'). 	 All holes are believed to intersect the mineralisation at 90 degrees and therefore represent true widths All intercepts reported are down hole lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See main body of report.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 All other relevant data has been reported. The reporting is considered to be balanced. Where data has been excluded, it is not considered material.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	 The Project area has been subject of significant exploration for base metals, graphite and gold. All relevant exploration data has been included in this report.

ASX RELEASE

Criteria	JORC Code Explanation	Commentary	
	substances.		
Further Work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further exploration, sampling, geochemistry and drilling required at all prosects Approximately 40 samples from Caralue Bluff are undergoing metallurgical test work to determine recovery rate of REEs. 	

Appendix 1.

Drill hole collars with -45-micron significant intersections – Caralue Bluff

Drill hole co						
Drill hole	Easting	Northing	AZIMUTH	DIP (deg)	RL (m)	DEPTH
	(m)	(m)	(deg)			(m)
CBAC22_013	606295	6315394	360	-90	190	30
CBAC22_033	610413	6310849	360	-90	197	38
CBAC22_034	610203	6310864	360	-90	199	39
CBAC22_039	608996	6310784	360	-90	191	45
CBAC22_055	607453	6309015	360	-90	183	45
CBAC22_056	607757	6308815	360	-90	183	33
CBAC22_057	607603	6309004	360	-90	181	35
CBAC22_058	607207	6309398	360	-90	186	21
CBAC22_060	607603	6309401	360	-90	181	26
CBAC22_062	607196	6309597	360	-90	181	20
CBAC22_070	606400	6310001	360	-90	195	48
CBAC22_070	606400	6310001	360	-90	195	48
CBAC22_073	606993	6309404	360	-90	186	32
CBAC22_073	606993	6309404	360	-90	186	32
CBAC22_074	606808	6309425	360	-90	184	21
CBAC22_076	606993	6309197	360	-90	190	34
CBAC22_077	606796	6309205	360	-90	188	22
CBAC22_078	606594	6309198	360	-90	202	33
CBAC22_080	606795	6308996	360	-90	193	27
CBAC22_082	606995	6308799	360	-90	200	38
CBAC22_083	606797	6308800	360	-90	200	36
CBAC22_084	606599	6308802	360	-90	194	35
CBAC22_085	606986	6308575	360	-90	189	35
CBAC22_086	607000	6308395	360	-90	209	43
CBAC22_087	606803	6308395	360	-90	206	34
CBAC22_088	606606	6308400	360	-90	201	21
CBAC22_090	605811	6309856	360	-90	209	37
CBAC22_091	605593	6309822	360	-90	185	39
CBAC22_091	605593	6309822	360	-90	185	39
CBAC22_092	605403	6309796	360	-90	189	25
CBAC22_093	605144	6309755	360	-90	192	31
CBAC22_097	604393	6309572	360	-90	205	32
CBAC22_102	603223	6310161	360	-90	175	33
CBAC22_103	603389	6310257	360	-90	179	42
CBAC22_104	603596	6310348	360	-90	180	36
CBAC22_105	603783	6310429	360	-90	179	39
CBAC22_107	604175	6310587	360	-90	214	34
CBAC22_109	604592	6310772	360	-90	170	21
CBAC22_112	603176	6311502	360	-90	208	31
CBAC22_116	607194	6310201	360	-90	188	38

Drill hole	Easting	Northing	AZIMUTH	DIP (deg)	RL (m)	DEPTH
	(m)	(m)	(deg)			(m)
CBAC22_116	607194	6310201	360	-90	188	38
CBAC22_119	607181	6310392	360	-90	193	37
CBAC22_121	607205	6308998	360	-90	187	36
CBAC22_123	607100	6308799	360	-90	188	42
CBAC22_124	607377	6308962	360	-90	182	45
CBAC22_124	607377	6308962	360	-90	182	45
CBAC22_125	607585	6308794	360	-90	186	25
CBAC22_129	607204	6308402	360	-90	197	33
CBAC22_132	607203	6308001	360	-90	196	27
CBAC22_135	607603	6307000	360	-90	210	30
CBAC22_138	608217	6307285	360	-90	194	45
CBAC22_139	608417	6307174	360	-90	191	46
CBAC22_144	607393	6313193	360	-90	206	30
CBAC22_145	607598	6313199	360	-90	212	28
CBAC22_146	607795	6313202	360	-90	189	21
CBAC22_148	608205	6313199	360	-90	188	33
CBAC22_149	608397	6313199	360	-90	184	28
CBAC22_150	608593	6313188	360	-90	184	26
CBAC22_150	608593	6313188	360	-90	184	26
CBAC22_153	609199	6313191	360	-90	170	23
CBAC22_154	609398	6313188	360	-90	172	19
CBAC22_155	609597	6313190	360	-90	173	26
CBAC22_156	610418	6312501	360	-90	166	26
CBAC22_156	610418	6312501	360	-90	166	26
CBAC22_157	610008	6312403	360	-90	166	19
CBAC22_158	609603	6312198	360	-90	167	20
CBAC22_159	609404	6312136	360	-90	169	24
CBAC22_159	609404	6312136	360	-90	169	24
CBAC22_160	609204	6312143	360	-90	173	24
CBAC22_161	609005	6312145	360	-90	175	23
CBAC22_162	608805	6312153	360	-90	175	30
CBAC22_163	608605	6312148	360	-90	175	33
CBAC22_163	608605	6312148	360	-90	175	33
CBAC22_165	607805	6311522	360	-90	167	26
CBAC22_165	607805	6311522	360	-90	167	26
CBAC22_168	607203	6311521	360	-90	181	27
CBAC22_169	607009	6311522	360	-90	181	29
CBAC22_170	610796	6311592	360	-90	182	38
CBAC22_171	611201	6311597	360	-90	181	27
CBAC22_174	611306	6311700	360	-90	182	21
CBAC22_176	611197	6311795	360	-90	182	18

Drill hole	Easting	Northing	AZIMUTH	DIP (deg)	RL (m)	DEPTH
	(m)	(m)	(deg)			(m)
CBAC22_183	610201	6313205	360	-90	197	21
CBAC22_184	610395	6313201	360	-90	173	21
CBAC22_189	612031	6311904	360	-90	158	18
CBAC22_197	610803	6314209	360	-90	219	33
CBAC22_199	610199	6314210	360	-90	229	45
CBAC22_200	610006	6314203	360	-90	224	18
CBAC22_201	609804	6314211	360	-90	224	33
CBAC22_202	609594	6314194	360	-90	226	33
CBAC22_203	609603	6314104	360	-90	224	27
CBAC22_203	609603	6314104	360	-90	224	27
CBAC22_204	609824	6313799	360	-90	213	20
CBAC22_205	609410	6313808	360	-90	219	24
CBAC22_206	609204	6313802	360	-90	216	30
CBAC22_207	609008	6313793	360	-90	216	36
CBAC22_208	608813	6313801	360	-90	219	33
CBAC22_209	609199	6314201	360	-90	210	45
CBAC22_210	609001	6314192	360	-90	207	21
CBAC22_211	608797	6314192	360	-90	219	17
CBAC22_213	608604	6314192	360	-90	222	10
CBAC22_214	608405	6314176	360	-90	208	45
CBAC22_214	608405	6314176	360	-90	208	45
CBAC22_215	608405	6313800	360	-90	212	23
CBAC22_217	608001	6313802	360	-90	218	15
CBAC22_218	607802	6313801	360	-90	216	18
CBAC22_220	607412	6313795	360	-90	208	23
CBAC22_222	607601	6314201	360	-90	209	28
CBAC22_223	607398	6314200	360	-90	207	15
CBAC22_228	607194	6313805	360	-90	202	17
CBAC22_228	607194	6313805	360	-90	202	17
CBAC22_229	610601	6314798	360	-90	230	45
CBAC22_230	610818	6314790	360	-90	207	37
CBAC22_239	610610	6314117	360	-90	196	29
CBAC22_240	606322	6309508	360	-90	171	30
CBAC22_250	603193	6309102	360	-90	156	33
CBAC22_251	603403	6309202	360	-90	162	30
CBAC22_255	605594	6310388	360	-90	176	36
CBAC22_256	605673	6310551	360	-90	179	36
CBAC22_257	605773	6310739	360	-90	176	39
CBAC22_258	605842	6310899	360	-90	179	27
CBAC22_259	606018	6311133	360	-90	184	30
CBAC22_260	606239	6311262	360	-90	184	39

